## Question

### Solution

Correct option is

4.374 MeV

The is represented by the equation Ignoring masses of electron and anti-neutrino, the value of the liberated energy is given by     The energy is shared by nucleus and the electron-antineutrino pair. Since is comparatively very much massive, almost whole of the liberated energy is taken by the electron-antineutrino pair. The electron will carry the maximum energy if the antineutrino carries no energy. Thus, the maximum kinetic energy of emitted electron is 4.374 MeV

#### SIMILAR QUESTIONS

Q1

A neutron is absorbed by a nucleus with subsequent emission of an -particle. Write the corresponding nuclear reaction and calculate the energy released in the reaction.

Given, Q2

Calculate the binding energy of an -particle in MeV. The masses of proton, neutron and -particle are 1.00728, 1.00867 and 4.00151 urespectively.

Q3

Calculate the binding energy of a deuteron in MeV.Given : mass of neutron = 1.008665 u, mass of hydrogen atom , mass of deuterium atoms Q4

Calculate the binding energy of a nitrogen nucleus in MeVGiven : mass of hydrogen atom = 1.00783 u, mass of

neutron = 1.00867 u and mass of nitrogen atom . Take 1 u = 931.5 MeV/c2.

Q5

Calculate the binding energy per nucleon of carbon nucleus. Given : mass of carbon atom = 12.00000 u, mass of proton = 1.00867 u, mass of electron = 1.00055 u. The energy equivalent of 1 u is 931.5 MeV.

Q6

Calculate the binding energy per nucleon of the nuclei of Given :mass of hydrogen atom = 1.007825 u, mass of neutron = 1.008665 u, mass of atom = 55.934939 u, mass of atom = 208.980388u and . Which nucleus is more stable?

Q7

The binding energy energies of deuteron and -particle are 1.112 and 7.07 MeV/nucleon respectively. Find out in the process , state whether energy is supplied or liberated and how much?

Q8

A heavy nucleus X of mass number A = 240 and binding energy per nucleon = 7.6 MeV is split into two nearly equal fragments Y and Z of mass numbers A1 = 110 and A2 = 130. The binding energy of each one of these nuclei is 8.5 MeV per nucleon. Calculate the total binding energy of each of the nuclei XY and Z, and hence the energy Q released per fission in MeV.

Q9

The neutron separation energy is defined to be the energy required to remove a neutron from a nucleus. Obtain the neutron separation energy of the nucleus of Given : mass of atom = 40.962278 u, mass of atom = 39.962591 u, mass of neutron = 1.008665 u and .

Q10

When a deuteron of mass 2.0141 u and negligible kinetic energy is absorbed by a lithium nucleus of mass 6.0155 u, the compound nucleus disintegrates spontaneously into two alpha particles, each of mass 4.0026 u. Calculate the energy in joule carried by each alpha particle. 