Find The Equation Of Normal To The x2 + y2 = 2x which Is Parallel To x + 2y= 3.  

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.



Find the equation of normal to the x2 + y2 = 2x which is parallel to x + 2y= 3.  


Correct option is

None of these


Given circle  

                   x2 + y2 = 2x = 0  

centre of given circle is (1, 0)

Since normal is parallel to

                   x + 2y = 3

Let the equation of normal is

                  + 2y = λ 

Since normal passes through the centre of the circle i.e. (1, 0) 

Then             1 + 0 = λ  

∴                          λ = 1

The equation of normal is

                     x + 2y = 1

or                 x + 2y – 1 = 0  



Find the equation of the circle which passes through the origin and makes intercepts of length a and b on axis of x and y respectively.


A circle of radius 2 lies in the first quadrant and touches both the axes of coordinate. Find the equation of circle with centre at (6, 5) and touching the above circle externally.


A circle of radius 5 units touches the coordinates axes in 1st quadrant. If the circle makes one complete roll on x axis along positive direction of xaxis. Find the equation in new position. 



Discus the position of the points (1, 2) and (6, 0) with respect to the circle.

                 x2 + y2 – 4x + 2y – 11 = 0   



Find the shortest and largest distance from the point (2, –7) to the circle 

                 x2 + y2 – 14x – 10y – 151 = 0   


Find the length of intercept on the S.L. 4x – 3y – 10 = 0 by the circle x2y2 – 2x + 4y – 20 = 0.


Find the coordinates of the middle point of the chord which the circle x2y2 + 4x – 2y – 3 = 0 cut off the line x – y + 2 = 0.   


For what values of λ will the line y = 2x + λ be a tangent to the circle x2y2 = 5.


Find the equation of tangent to the circle x2 + y2 – 2ax = 0 at the point  



Find the equation of normal at the point (5, 6) to the circle;

x2 + y2 – 5x + 2y – 48 = 0