Question

Find the equation of tangent to the circle x2 + y2 = 16 drawn from the point (1, 4).

Solution

Correct option is

8x + 15y = 68

 

   

Which pass through (1, 4)

                  

Equations of tangents drawn from (1, 4) are  

           

or      8x + 15y = 68 respectively.   

 

SIMILAR QUESTIONS

Q1

A circle of radius 5 units touches the coordinates axes in 1st quadrant. If the circle makes one complete roll on x axis along positive direction of xaxis. Find the equation in new position. 

Q2

 

Discus the position of the points (1, 2) and (6, 0) with respect to the circle.

                 x2 + y2 – 4x + 2y – 11 = 0   

Q3

 

Find the shortest and largest distance from the point (2, –7) to the circle 

                 x2 + y2 – 14x – 10y – 151 = 0   

Q4

Find the length of intercept on the S.L. 4x – 3y – 10 = 0 by the circle x2y2 – 2x + 4y – 20 = 0.

Q5

Find the coordinates of the middle point of the chord which the circle x2y2 + 4x – 2y – 3 = 0 cut off the line x – y + 2 = 0.   

Q6

For what values of λ will the line y = 2x + λ be a tangent to the circle x2y2 = 5.

Q7

Find the equation of tangent to the circle x2 + y2 – 2ax = 0 at the point  

Q8

Find the equation of normal to the x2 + y2 = 2x which is parallel to x + 2y= 3.  

Q9

 

Find the equation of normal at the point (5, 6) to the circle;

x2 + y2 – 5x + 2y – 48 = 0   

Q10

 

The angle between a pair of tangents from a point P to the circle

     x2 + y2 + 4x – 6y + 9 sin2α + 13 cos2α = 0 is 2α.

Find the equation of the lows of the point P.