## Question

### Solution

Correct option is

x2 + y2 + x – 2y – 41 = 0

The centres of the given circles

x2 + y2 + 6x – 14y – 1 = 0

and x2 + y2 – 4x + 10y – 2 = 0 are (–3, 7) and (2, –5) are the extremities of the diameter of required circle.

Hence equation of circle is

(x + 3) (x – 2) + (y – 7) (y + 5) = 0

⇒        x2 + y2 + x – 2y – 41 = 0

#### SIMILAR QUESTIONS

Q1

Find the equation of chord of x2 + y2 – 6x + 10y – 9 = 0 which is bisected at (–2, 4).

Q2

Find the equation of that chord of the x2 + y2 = 15 which is bisected at (3, 2).

Q3

Find the centre and radius of the circle

2x2 + 2y2 = 3x – 5y + 7

Q4

Find the equation of the circle whose centre is the point of intersection of the lines 2x – 3y + 4 = 0 and 3x + 4y – 5 = 0 and passes through the origin.

Q5

Find the equation of the circle concentric with the circle x2 + y2 – 8x + 6y– 5 = 0 and passing through the point (–2, –7).

Q6

A circle has radius 3 units and its centre lies on the line y = x – 1. Find the equation of the circle if it passes through (7, 3).

Q7

Find the area of an equilateral triangle inscribed in the circle

x2 + y2 + 2gx + 2fy + c = 0

Q8

Find the parametric form of the equation of the circle

x2 + y2 + px + py = 0

Q9

If the parametric of form of a circle is given by

(i) x = – 4 + 5 cos θ and y = – 3 + 5 sin θ

(ii) x = a cos α + b sin α and y = a sin α – b cos α

Find its Cartesian form.

Q10

The sides of a square are x = 2, x = 3, y = 1and y = 2. Find the equation of the circle drawn on the diagonals of the square as its diameter.