## Question

### Solution

Correct option is Given equations are

x2 + 2ax – b2 = 0             …(1)

and            x2 + 2px – q2 = 0             …(2)

Let the roots of the equation (1) be α and β and those of equation (2) by γ and δ. Then Let A ≡ (α, γ) and B ≡ (β, δ).

Now equation of circle whose diameter is AB will be

(x – α) (x – β) + (y – γ) (γ – δ) = 0   #### SIMILAR QUESTIONS

Q1

Find the equation of the circle whose centre is the point of intersection of the lines 2x – 3y + 4 = 0 and 3x + 4y – 5 = 0 and passes through the origin.

Q2

Find the equation of the circle concentric with the circle x2 + y2 – 8x + 6y– 5 = 0 and passing through the point (–2, –7).

Q3

A circle has radius 3 units and its centre lies on the line y = x – 1. Find the equation of the circle if it passes through (7, 3).

Q4

Find the area of an equilateral triangle inscribed in the circle

x2 + y2 + 2gx + 2fy + c = 0

Q5

Find the parametric form of the equation of the circle

x2 + y2 + px + py = 0

Q6

If the parametric of form of a circle is given by

(i) x = – 4 + 5 cos θ and y = – 3 + 5 sin θ

(ii) x = a cos α + b sin α and y = a sin α – b cos α

Find its Cartesian form.

Q7

Find the equation if the circle the end points of whose diameter are the centres of the circle x2 + y2 + 6x – 14y = 1 and x2 + y2 – 4x + 10y = 2.

Q8

The sides of a square are x = 2, x = 3, y = 1and y = 2. Find the equation of the circle drawn on the diagonals of the square as its diameter.

Q9

Find the equation of the circum circle of the quadrilateral formed by the four lines ax + by ± c = 0 and bx – ay ± c = 0.

Q10

Find the equation of the circle which passes through the points (4, 1), (6, 5) and has its centre on the line 4x + y = 16.