Question

Find the length of the tangents drawn from the point (3, – 4) to the circle 2x2 + 2y2 – 7x – 9y – 13 = 0.

Solution

Correct option is

 

The equation of the given circle is

                2x2 + 2y2 – 7x – 9y – 13 = 0  

Re-writing the given equation of the circle in standard form

  

                     

                      

SIMILAR QUESTIONS

Q1

Find the equation of tangent to the circle x2 + y2 – 2ax = 0 at the point   

Q2

Find the equation of the tangents to the circle x2 + y2 = 9, which  Are parallel to the line 3x + 4y – 5 = 0

Q3

 

Find the equation of the tangents to the circle x2 + y2 = 9, which

Are perpendicular to the line 2x + 3y + 7 = 0.

Q4

Find the equation of the tangents to the circle x2 + y2 = 9, which make an angle of 60o with the x-axis.

Q5

Show that the line 3x – 4y = 1 touches the circle x2 + y2 – 2x + 4y + 1 = 0. Find the co-ordinates of the point of contact.

Q6

The line (x – 2) cos θ + (y – 2) sin θ = 1 touches a circle for all values of θ. Find the circle.

Q7

 

Find the equation of the normal to the circle

x2 + y2 – 5x + 2y – 48 = 0 at the point (5, 6).

Q8

Find the equation of the tangents to the circle x2 + y2 = 16 drawn from the point (1, 4).

Q9

The angle between a pair of tangents from a point P to the circle x2 + y2+ 4x – 6y + 9 sin2α + 13 cos2α = 0 is 2α. Find the equation of the locus of the point P.

Q10

Find the area of the triangle formed by tangents from the point (4, 3) to the circle x2 + y2 = 9 and the line segment joining their points of contact is