## Question

### Solution

Correct option is

x2 + y2 – x – 2y = 0

Equation of any circle through points of intersection of the given circle and the line is

(x2 + y2 – 2x – 4y + 4) + λ(x + 2y – 4) = 0

or        x2 + y2 + (λ – 2)+ (2λ – 4)y + 4(1 – λ) = 0           …(1)

It will touch the line x + 2y = 0 if solution of equation (1) and

x = –2y be unique.

Hence the roots of the equation or must be equal From (1), the required circle is x2 + y2 – x – 2y = 0

#### SIMILAR QUESTIONS

Q1

Find the locus of middle points of chords of the circle x2 + y2 = a2, which subtend right angle at the point (c, 0).

Q2

Find the equations of the tangents from the point A(3, 2) to the circle x2y2 + 4x + 6y + 8 = 0 .

Q3

If two tangents are drawn from a point on the circle x2 + y2 = 50 to the circle x2 + y2 = 25 then find the angle between the tangents.

Q4

Find the equation of the diameter of the circle

x2 + y2 + 2gx + 2fy + c = 0 which corresponds to the chord ax = by + d= 0.

Q5

Find the locus of the pole of the line lx + my + n = 0 with respect to the circle which touches y-axis at the origin.

Q6

Examine if the two circles x2 + y2 – 2x – 4y = 0 and x2 + y2 – 8y – 4 = 0 touch each other externally or internally.

Q7

Find the equation of the circle passing through (1, 1) and the points of intersection of the circles

x2 + y2 + 13x – 3y = 0 and 2x2 + 2y2 + 4x – 7y – 25 = 0.

Q8

Find the equation of the circle passing through the point of intersection of the circles x2 + y2 – 6x + 2y + 4 = 0, x2 + y2 + 2x – 4y – 6 = 0 and with its centre on the line y = x.

Q9

Find the equation of the circle passing through the points of intersection of the circles x2 + y2 – 2x – 4y – 4 = 0 and x2 + y2 – 10x – 12y + 40 = 0 and whose radius is 4.

Q10

Find the circle whose diameter is the common chord of the circles x2 + y2+ 2x + 3y + 1 = 0 and x2 + y2 + 4x + 3y + 2 = 0.