Question

As an example consider the function (x) = – (–x)5/5, –1 ≤ x ≤ 0. Then at (0, 0) (x) has 

Solution

Correct option is

Absolute maximum

  

At x = 0.

We have a absolute maximum.

                                       

SIMILAR QUESTIONS

Q1

Find the vertical angle of right circular some of minimum curved surface that circumscribes in a given sphere.

Q2

 AB > 0, then minimum value of sec A + sec B is equal to   

 

Q4

(x) = x2 – 4 | | and

               

Then (x) has    

 

Q5

If xy = 10, then minimum value of 12x2 + 13y2 is equal to

Q6

The function f (x) = x (x2 – 4)n (x2 – x + 1), n Ïµ N assumes a local minima at x = 2, then   

Q8

Total number of critical points of (x) = maximum (sin x, cos x) ∀ x Ïµ (–2π, 2π) equal to   

 

Q9