Question

Solution

Correct option is

A local maximum

 

  

We have to find the condition at   

So just consider last 2 functions 

                            

So (x) has a local maximum

SIMILAR QUESTIONS

Q1

If xy = 10, then minimum value of 12x2 + 13y2 is equal to

Q2

The function f (x) = x (x2 – 4)n (x2 – x + 1), n Ïµ N assumes a local minima at x = 2, then   

Q4

Total number of critical points of (x) = maximum (sin x, cos x) ∀ x Ïµ (–2π, 2π) equal to   

 

Q5
Q6

As an example consider the function (x) = – (–x)5/5, –1 ≤ x ≤ 0. Then at (0, 0) (x) has 

Q8

 then f’(0) is equal to 

Q9

 

  

Local minimum at x = 2, then