Question

 where 0 <x < π then the interval in which g(x) is decreasing is:   

Solution

Correct option is

   

For g(x) to be decreasing, g’(x) < 0

  

                     …(i)  

   

Thus, equation (i) holds, if cot x + 1 > 0

SIMILAR QUESTIONS

Q2

Find the interval for which (x) = x – sin x is increasing or decreasing.

Q3

   

Where a is positive constant. Find the interval in which f’ (x) is increasing.

Q4

If a < 0, and f (x) = eax + e–ax is monotonically decreasing. Find the interval to which x belongs.   

Q6

If (x) = ax3 + bx2 + cx + d where abcd are real numbers and 3b2 < c2, is an increasing cubic function and g(x) = af’ (x) + bf’’ (x) + c2, then

Q7

If f : R  R, (x) is a differentiable bijective function, then which of the following is true?

Q8

If (x) and (x) are two positive and increasing function, then

Q9

If the function y = sin (f (x)) is monotonic for all values of x (where (x) is continuous), then the maximum value of the difference between the maximum and the minimum value of (x), is: 

Q10

Find the critical points for f (x) = (x – 2)2/3 (2x + 1).