Question

A cubic (x) vanishes at x = –2 and has relative maximum/minimum x = –1 and   Find the cubic (x). 

Solution

Correct option is

(x) is a cubic polynomial.  

Therefore, f’(x) is a quadratic polynomial and (x) has relative maximum and minimum at  respectively,  

                  

  

Now integrating w.r.t. x we get,  

            

Again f (–2) = 0 (given)  

  

  

  

SIMILAR QUESTIONS

Q1

 

Using calculus, find the order relation between x and tan-1x when x Ïµ [0, ∞). 

Q2

Using calculus, find the order relation between x and tan-1x when  

Q3

The set of all values of ‘b’ for which the function (x) = (b2 – 3b + 2) (cos2x – sin2x) + (b – 1) x + sin 2 does not possesses stationary points is:

Q4

 

Find the local maximum and local minimum of (x) = x3 + 3x in [–2, 4].

Q5

The function  has a local maximum at x =

Q6

Find the set of critical points of the function  

              

Q7

Let (x) = sin x – x on [0, π/2], find local maximum and local minimum.

Q8

  

Then find the value of ‘a’ for which (x) has local minimum at x = 2.

Q9

  

Discuss maxima and minima.

 

Q10

 

Find the maximum and minimum value of