Question

 be the differential equation of a curve and let P be the point of maxima then number of tangents which can be drawn from P to x2 – y2a2 is/are:

Solution

Correct option is

2

At point of maxima f’(x) = 0 and f’’(x) < 0   

  

 lies outside x2 – y2 = a2.

∴ Two normals  can be drawn.

SIMILAR QUESTIONS

Q1

  

Then find the value of ‘a’ for which (x) has local minimum at x = 2.

Q2

  

Discuss maxima and minima.

 

Q3

A cubic (x) vanishes at x = –2 and has relative maximum/minimum x = –1 and   Find the cubic (x). 

Q4

 

Find the maximum and minimum value of  

                      

Q5

Use the function (x) = x1/xx > 0 to determine the bigger of the two numbers.

Q6

 

The maximum value of 

Q7

 then the maximum value of (θ), is:

Q8

The values of ‘K’ for which the point of minimum of the function f (x) = 1 + K2x – x3 satisfy the inequality  belongs to:

Q9

The values of a and b for which all the extrema of the function;  is positive and the minimum is at the point  are:

Q10

A solid cylinder of height H has a conical portion of same height and radius 1/3rd of height removed from it. Rain water is falling in the cylinder with rate equal to π times the instantaneous radius of the water surface inside hole, the time after which hole will fill up with water is: