Question

A solid cylinder of height H has a conical portion of same height and radius 1/3rd of height removed from it. Rain water is falling in the cylinder with rate equal to π times the instantaneous radius of the water surface inside hole, the time after which hole will fill up with water is:

Solution

Correct option is

  

                      

  

  

SIMILAR QUESTIONS

Q1

  

Discuss maxima and minima.

 

Q2

A cubic (x) vanishes at x = –2 and has relative maximum/minimum x = –1 and   Find the cubic (x). 

Q3

 

Find the maximum and minimum value of  

                      

Q4

Use the function (x) = x1/xx > 0 to determine the bigger of the two numbers.

Q5

 

The maximum value of 

Q6

 then the maximum value of (θ), is:

Q7

The values of ‘K’ for which the point of minimum of the function f (x) = 1 + K2x – x3 satisfy the inequality  belongs to:

Q8

The values of a and b for which all the extrema of the function;  is positive and the minimum is at the point  are:

Q9

 be the differential equation of a curve and let P be the point of maxima then number of tangents which can be drawn from P to x2 – y2a2 is/are:

Q10

Find the value of n, for which (x) = (x2 – 4)n(x2 – x + 1), n Ïµ N assumes a local minima at x = 2.