Question

For a given pair of values x and y satisfying x = sin αy = sin β, there are four different values of z = sin (α + β) whose product is equal to

Solution

Correct option is

(x2 – y2)2

z = sin (α + β) = sin α cos β + cos α cos β

               

There are four values of z, given by

   

and their product is equal to

SIMILAR QUESTIONS

Q1

 of k is equal to

 

Q2

If A and B are acute positive angles satisfying the equation 3 sin2 A + 2 sin2B = 1 and 3 sin 2A – 2 sin2B = 0, then A + 2B is equal to

 

Q3

  equal to

Q4

 

 

Q5

 to

Q6
Q7

    

Q8

If θ and ∅ are acute angles such that sin θ = 1/2 and cos ∅ = 1/3 and cos ∅ = 1/3, then θ + ∅ lies in

Q9

The value of tan 3α cot α cannot lie in

Q10

 

value of α is