Question

If sin θ (1 + sin θ) + cos θ (1 + cos θ) = x and sin θ (1 – sin θ) + cos θ (1 – cos θ) = y then

Solution

Correct option is

x – y = 2

sin θ + cos θ = x – 1 = y + 1

sin 2θ = (sin θ + cos θ)2 – 1 = x2 – 2x = y2 + 2y

      xy = (sin θ + cos θ)2 – 1 = sin 2θ

    x – y = 2

SIMILAR QUESTIONS

Q1
Q3

The maximum value of (cos α1) (cos α2) …(cos αn) under the restriction 0 ≤ α1, α1,…., α1 ≤ π/2 and (cos α1) (cos α2) …

(cos αn) = 1 is

Q4

The number of integral values of k for which the equation 7 cos x + 5 sin x = 2k + 1 has a solution is

 

Q5

 

                                                              

Q6

  

    

are two matrices such that AB is the null matrix, then

Q7

 is independent of θ, then

Q9

The equation sin4 x + cos4 x = a has a real solution for

Q10

If sec A tan B + tan A sec B = 91, then the value of (sec A sec B + tan A tan B)2 is equal to