Question

 

Solution

Correct option is

tan 3θ = 0 and tan θ tan 2θ = 0

Clearly tan θ ≠ 0 and tan 2θ ≠ 0 for 0 < θ < π/2. We have tan 3θ = tan (2θ +θ)

                 

   

                                  

                                     

SIMILAR QUESTIONS

Q1

  

    

are two matrices such that AB is the null matrix, then

Q2

 is independent of θ, then

Q4

The equation sin4 x + cos4 x = a has a real solution for

Q5

If sin θ (1 + sin θ) + cos θ (1 + cos θ) = x and sin θ (1 – sin θ) + cos θ (1 – cos θ) = y then

Q6

If sec A tan B + tan A sec B = 91, then the value of (sec A sec B + tan A tan B)2 is equal to

Q7

The values of θ lying between 0 and π/2 and satisfying the equation

                      

Q8

Find the maximum and minimum values of 6 sin x cos x + 4 cos 2x.

Q9