Question

Solution set of the inequality

               

Solution

Correct option is

For (1) to hold, we must have

x > 0, x ≠ 1 and 2x2 + x – 1 > 0

x >0, x ≠ 1 and (2x – 1)(x + 1) > 0

x > ½, x ≠1.

We can write (1) as

          

For ½ < x < 1, (2) can be written as

                    

For x > 1, (2) can be written as

                    

This is true for each x > 1.

Thus, (1) holds for 1/2 < x < 1, x > 1.

SIMILAR QUESTIONS

Q1

The value of x satisfying 

Q2

The solution of the equation

             is

Q3

The set of all x satisfying the equation 

Q4

The set of all solutions of the inequality  contains the sets

Q5

The set of all the solutions of the inequality 

           

Q6

If log3 x + log3 y = 2 + log3 2 and log3 (x + y) = 2 then

Q7

The set of all solutions of the equation 

 

                                                                                           

Q8

 then the value of log30 8

Q9

 then the value of ab + 5(a – b) is