What are the values of gravitational attraction and potential at the surface of earth referred to zero potential at infinite distance? Given that the mass of the earth is  the radius of earth is 6400 km and G = 6.67 ×10 –11MKS units.


Correct option is


According to the theory of gravitation, for an external point a spherical mass distribution behaves as if the whole of its mass were concentrated at the centre; so  




An artificial satellite of mass 200 kg revolves around the earth in an orbit of average radius 6670 km. Calculate its orbital kinetic energy, the gravitational potential energy and the total energy in the orbital.

(Mass of earth = 6.0 × 1024 kg, G = 6.67 × 10–11 Nm2 kg –2). 


With what velocity must a body be thrown upward from the surface of the earth so that it reaches a height of 10 Re? Earth’s mass  and G = 6.67 × 10 –11 Nm2kg–2.


A rocket is launched vertically from the surface of the earth with an initial velocity of 10 km s–1. How far above the surface of the earth would it go? Mass of the earth = 6.0 × 1024 kg, radius = 6400 km and G = 6.67 × 10 –11 Nm2 kg –2  


The escape velocity of a body from earth is 11.2 km s–1. If the radius of a planet be half the radius of the earth and its mass be one-fourth that of earth, then what will be the escape velocity from the planet?



A body is at a height equal to the radius of the earth from the surface of the earth. With what velocity be it thrown so that it goes out of the gravitational field of the earth? Given:

N m2 kg–2.


A particle falls on the surface of the earth from infinity. If the initial velocity of the particle is zero and friction due to air is negligible, find the velocity of the particle when it reaches the surface of the earth. Also find its kinetic energy. (Radius of earth is 6400 km and g is 9.8 m/s2.)



A mass of  is to be compressed in the form of a sphere. The escape velocity from its surface is  What should be the radius of the sphere. Gravitational constant



Imagine a planet whose diameter and mass are both one-half of those of earth. The day’s surface temperature of this planet reaches upto 800 K. Are oxygen molecules possible in the atmosphere of this planet? Give calculation. (Escape velocity on earth’s surface = 11.2 km s–1, Boltzmann’s constant

k = 1.38 × 10–23 JK–1, mass of oxygen molecule = 5.3 × 10–26 kg.)


A hollow spher is made of a lead of radius R such that its surface touches the outside surface of the lead sphere and passes through its centre. The mass of the lead sphere before hollowing was M. What is the force of attraction that this sphere would exert on a particle of mass which lies at a distance from the centre of the lead sphere on the straight line joining the centres of the sphere and the hollow (as shown in fig.)?



In a certain region of space gravitational field is given by I = – (K/r). Taking the reference point to be at r = r0 with V = V0, find the potential.