Water Stands At A Depth Of 15m Behind A Reservoir Dam. A Horizontal Pipe 4 Cm In Diameter Passes Through The Dam 6m Below The Surface Of Water As Shown. There Is Plug Which Secures The Pipe Opening. Then The Friction Between The Plug And Pipe Wall Is:

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

SPEAK TO COUNSELLOR ? CLICK HERE

Question

Water stands at a depth of 15m behind a reservoir dam. A horizontal pipe 4 cm in diameter passes through the dam 6m below the surface of water as shown. There is plug which secures the pipe opening. Then the friction between the plug and pipe wall is:

Solution

Correct option is

74 N

 

As plug secures the pipe opening, the force of friction between plug and pipe wall.

                        

But p1 = p0 and      

                 p2 = p0 + hg

                 

                 

                .

SIMILAR QUESTIONS

Q1

Water tank has a hole in its wall at a distance of 10 m below the free surface of water. The diameter of the hole is 2 mm. Compute the velocity of efflux of water from the hole and the rate of flow of water. (g = 9.8 m/s2

Q2

S1 and S2 are spring balances. A block A is hanging from spring balanceS1 and immersed in a liquid L which is contented a beaker B. The mass of beaker B is 1 kg and the mass of liquid L is 1.5 kg. The S1 and S2balances reads 2.5 kg and 7.5 kg respectively. What will be the reading ofS1 and S2 when the block A is pulled up out of the liquid :  

Q3

Air is blow through a pipe AB at a rate of 15 liter per minute. The cross section area of the wide portion of the pipe AB is 2 cm2 and that of the narrow potion is 0.5 cm? the difference in the water level h is :    

Q4

Water from a tap emerge vertically downward with a initial speed of 1 m/s. The cross section area of the tap is 10–4 m2. Assume that the pressure is constant throughout the stream of water and that the flow steady. The cross section area of the stream 0.15 m below the tap is : 

Q5

A pipe GB is fitted with two pipes C and D. The pipe has area A = 24 m2at G and velocity of water at G is 10 m/s and at C is 10 m/s the velocity of water D is 

Q6

A non viscous liquid of constant density 500 kg/m2 flows in a variable cross-sectional tube. The area of cross section of the tube at two points Pand Q at height of 3 m and 6 m are  and  respectively. The work done per unit volume by the force of gravity as the fluid flows from point P and Q is   

Q7

Water flows along a horizontal pipe whose cross section is not constant. The pressure is 1 cm of Hg where the velocity is 35 cm/s. At a point where the velocity is 65 cm/s. At a point where the velocity is 65 cm/s, the pressure will be:

Q8

A cylindrical vessel is filled with water to a height H. A vessel has two holes in the side, from which water is rushing out horizontally and two streams strike at the same point. If the lower hole Q is h height abve the ground, then the height of hole P above the ground will be :

Q9

There is a wide tank of cross-section area A contain a liquid to a height Hhas a small orifice at its base of area 'a' (a < < A). The time during which liquid level falls to a height 

Q10

An isosceles triangle of base 3m and altitude 6m, is immersed vertically in water having its axis of symmetry horizontal as shown in figure. If height of water on its axis is 9m, the total thrust on the plate is