One End Of A String Of Length 1.0 M Is Tied To A Body Of Mass 0.5 Kg. It Is Whirled In A Vertical Circle As Shown In Fig. If The Angular Frequency Of The Body Is 4 Rad S–1, What Is The Tension In The Strong When The Body Is At The Topmost Point A? Take g = 10 Ms–2.                                                                        

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

SPEAK TO COUNSELLOR ? CLICK HERE

Question

One end of a string of length 1.0 m is tied to a body of mass 0.5 kg. It is whirled in a vertical circle as shown in fig. If the angular frequency of the body is 4 rad s–1, what is the tension in the strong when the body is at the topmost point A? Take g = 10 ms–2.

                                                                       

Solution

Correct option is

3 N

 

Speed of the body (v) = Rω = 1.0 × 4 = 4 ms –1.  

Referring to fig, we find that, when the body is at the topmost point A, the tension in the string is  

                            

                                   

  

 

      

SIMILAR QUESTIONS

Q1

A stone, tied to the end of a string of length 50 cm, is whirled in a horizontal circle with a constant speed. If the stone makes 40 revolutions in 20 s, what is the speed of the stone along the circle?

Q2

A cyclist is moving with a speed of 6 ms–1. As he approaches a circular turn on the road of radius 120 m, he applies brakes and reduces his speed at a constant rate of 0.4 ms–2. The magnitude of the net acceleration of the cyclist on the circular turn is 

Q3

 

A simple pendulum of length L and with a bob of mass M is oscillating in a plane about a vertical line between angular limits

–Ï• and +Ï•. For an angular displacement θ (< Ï•) the tension is the string and the velocity of the bob are T and v respectively. The flowing relations hold good under the above conditions:

Q4

A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity of the particle. The motion of the particle takes place in a plane. It follows that:

Q5

A simple pendulum of bob mass m swings with an angular amplitude of 40o. When its angular displacement is 20o, the tension in the string is

Q6

A car moves at a speed of 36 km h–1 on a level road. The coefficient of friction between the tyres and the road is 0.8. The car negotiates a curve of radius R. If g = 10 ms –2, the car will skid (or slip) while negotiating the curve if value of R is  

Q7

 

A train has to negotiate a curve of radius 200 m. by how much should the outer rails be raised with respect to the inner rails for a speed of 36 km h –1. The distance between the rails is 1.5 m.

Take g = 10 ms–2

Q8

One end of a string of length R is tied to a stone of mass m and the other end to a small pivot on a frictionless vertical board. The stone is whirled in a vertical circle with the pivot as the centre. The minimum speed the stone must have, when it is at the topmost point on the circle, so that the string does not slack is given by

Q9

The pilot of an aircraft, who is not tied to his seat, can loop a vertical circle in air without falling out at the top of the loop. What is the minimum speed required so that he can successfully negotiate a loop or radius 4 km? Take g = 10 ms–2 

Q10

A simple pendulum of length r and bob mass m swings in a vertical circle with angular frequency ω. When the string makes an angle θ with the vertical, the speed of the bob is v. The radical acceleration of the bob at this instant is given by