## Question

### Solution

Correct option is At the mean position, the velocity of the particle is v = . Therefore    #### SIMILAR QUESTIONS

Q1

A wave of frequency 100 Hz is sent along a string towards a fixed end. When this wave travels back after reflection, a node is formed at a distance of 10 cm from the fixed end of the string. The speed of the incident (or reflected) wave is

Q2

A particle starts simple harmonic motion from the mean position O as shown in the figure. Its amplitude is A and its time period is T. At a certain instant, its speed is half its maximum speed. At this instant, the displacement x is Q3

The wave equation is Where tx and y are in second, metre and centimeter respectively. The speed of the wave is

Q4

An observer is standing between two vehicles, each moving with a speed 4 ms–1. One vehicle is approaching him and the other going away from him. If each vehicle is blowing a horn of frequency 240 Hz and the speed of sound is 320 ms–1, the number of beats per second will be

Q5

A spring is extended by a length l, the according to Hooke’s law

Q6

A transverse wave is represented by For what value of λ is the maximum particle velocity equal to twice the wave velocity?

Q7

A pendulum clock keeps correct time at 20oC. The coefficient of linear expansion of pendulum is . If the room temperature increases to 40oC, how many seconds will the clock lose or gain per day?

Q8

A mass m is suspended from a spring of negligible mass. The system oscillates with frequency n. What will be the frequency if a mass 4 m is suspended from the same spring?

Q9

In a sinusoidal wave, the time required for a particular point to move from maximum displacement to zero displacement is 0.17s. The frequency of the wave is

Q10

A standing wave having 3 nodes and 2 antinodes is formed between two atoms having a separation of 1.21 Å between them. The wavelength of the standing wave is