﻿ The foci of the conic 25x2 +16y2 – 150x = 175 are : Kaysons Education

# The Foci Of The Conic 25x2 +16y2 – 150x = 175 Are

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

The given conic can be re-written as

Shifting the origin at (3, 0) without rotating the coordinates axes,

We have,

The equation of the ellipse with reference to new axes is

Comparing this equation with the standard equation

.

Let e be the eccentricity of the given conic. Then,

The coordinates of foci with respect to new origin are

Substituting these in (i), we obtain (3, ±3) as the coordinates of foci.

#### SIMILAR QUESTIONS

Q1

The length of the axes of the conic 9x2 + 4y2 – 6x + 4y + 1 = 0 are

Q2

The eccentricity of the ellipse

Q3

If the eccentricities of the two ellipse

are equal, then the value , is

Q4

The curve represented by the equation

, is

Q5

The equation of the ellipse whose axes are along the coordinate axes, vertices are (±5, 0) are foci at (±4, 0), is

Q6

The equation of the ellipse whose axes are along the coordinate axes, vertices are (0, ±10) and eccentricity e = 4/5, is

Q7

If the latusrectum of an ellipse is equal to one half of its minor axis, then the eccentricity is equal to

Q8

The eccentricity of the ellipse, if the distance between the foci is equal to the length of the latusrectum, is

Q9

The equation of the circle drawn with the two foci of  as the end-points of  a diameter, is

Q10

The foci of the ellipse  are