If Radii Of Director Circles Of  are 2r and rrespectively And ee and eh be The Eccentricities Of The Ellipse And Hyperbola Respectively, Then  

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

SPEAK TO COUNSELLOR ? CLICK HERE

Question

If radii of director circles of  are 2r and rrespectively and ee and eh be the eccentricities of the ellipse and hyperbola respectively, then  

Solution

Correct option is

 

The equation of the director circles of ellipse and hyperbola are  

      

  

  

  

    

  

  

SIMILAR QUESTIONS

Q1

The eccentricity of the conjugate hyperbola of the hyperbola x2 – 3y2 = 1 is

Q2

The slopes of the common tangents of the hyperbolas  and 

Q3

A hyperbola, having the transverse axis of the length , is confocal with the ellipse 3x2 + 4y2 = 12. Then, its equation is  

Q4

The locus of point of intersection of tangents at the ends of normal chord of the hyperbola x2 – y2 = a2 is

Q5

If a hyperbola passing through the origin has 3x – 4y – 1 = 0 and 4x – 3y – 6 = 0 as its asymptotes, then the equations of its transverse and conjugate axes are  

Q6

If H(xy) = 0 represents the equation of a hyperbola and A(xy) = 0, C(x,y) = 0 the joint equation of its asymptotes and the conjugate hyperbola respectively, then for any point (α, β) in the plane,  are in

Q7

The equation of a tangent to the hyperbola  which make an angle π/4 with the transverse axis, is

Q8

For the hyperbola  which of the following remains constant with change in ‘α’

Q9

The equation of the line passing through the centre of a rectangular hyperabola is x – y – 1 = 0. If one of its asymptotes is 3x – 4y – 6 = 0, the equation of the other asymptotes is

Q10

 are two points on the hyperbola  such that  (a constant), then PQ touches the hyperbola