﻿ Three integers are chosen at random without replacement from the first 20 integers. The probability that their product is even 2/19. : Kaysons Education

# Three Integers Are Chosen At Random Without Replacement From The First 20 Integers. The Probability That Their Product Is Even 2/19.

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

17/19

The product of any number of integers will be even if and only if at least one of the integers involved is even. Let A denote the event that the product of the three integers is even. Then A’ denotes the event that the product of three integers is odd. The total number of ways of choosing three integers out of 1, 2,…,20 is . The number of ways favourable toA’ is

#### SIMILAR QUESTIONS

Q1

There are two balls in an urn whose colours are not known (each ball can be either white or black). A white ball is put into the urn. A ball is drawn from the urn. The probability that it is white is

Q2

A natural number x is chosen at random from the first one hundred natural numbers. The probability that   is

Q3

An experiment has 10 equally likely outcomes. Let A and B two non – empty events of the experiment. If a consists of 4 outcomes, the number of outcomes that B must have so that A and B are independent, is

Q4

If AB and C are the events such that P(B) = 3/4, P(A ∩ B ∩ C’) = 1/3P(A’ ∩ B ∩ C’) = 1/3, then P (B ∩ C) is equal to

Q5

A fair coin is tossed n times. If the probability that head occurs 6 times is equal to the probability that occurs 8 times, then value of n is

Q6

A person writes 4 letters and addresses on 4 envelopes. If the letters are placed in the envelopes at random, the probability that not all letters are placed in correct envelopes is

Q7

A letter is known to have come from either TATANAGAR or CALCUTTA. On the envelope, just two consecutive letters, TA, are visible. The probability that the letter has come from CACUTTA is

Q8

A group of 6 boys and 6 girls is randomly divided into two equal groups. The probability that each group contains 3 boys and 3 girls is

Q9

In a hurdle race, a runner has probability p of jumping over a specific hurdle. Given that in 5 trials, the runner succeeded 3 times, the conditional probability that the runner had succeeded in the first trial is

Q10

A box contains tickets numbered 1 to Nn tickets are drawn from the box with replacement. The probability that the largest number on the tickets is is