﻿ A bag contains 4 tickets numbered 1, 2, 3, 4 and another bag contains 6 tickets numbered 2, 4, 6, 7, 8, 9. One bag is chosen and a ticket is drawn. The probability that the ticket bears the number 4 is: : Kaysons Education

# A Bag Contains 4 Tickets Numbered 1, 2, 3, 4 And Another Bag Contains 6 Tickets Numbered 2, 4, 6, 7, 8, 9. One Bag Is Chosen And A Ticket Is Drawn. The Probability That The Ticket Bears The Number 4 Is:

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

5/24

Let E2 be the ever that bag II is chosen  Let A be the event ticket drawn is 4

#### SIMILAR QUESTIONS

Q1

A box contain 100 tickets numbered 1, 2,…100. Two tickets are chosen at random. It is given that the greater number on the two chosen tickets is not more than 10. The probability that the smaller number is 5 is:

Q2

A bag contains four tickets marked with numbers 112, 121, 211, 222. One ticket is drawn at random from the bag. Let

Ei(i = 1, 2, 3) denote the event that its digit on the ticket is 2. Than:

Q3

Two dice are rolled one after the other. The probability that the number on the first is smaller than the number on the second is:

Q4

There are 20 cards. 10 of these cards have the letter ‘I’ printed on them and the other 10 have the letter ‘T’ printed on them. If three cards are drawn without replacement and kept in the same order, the probability of making word IIT is:

Q5

A box contains 2 black, 4 white and 3 red balls. One ball is drawn at random from the box and kept aside. From the remaining balls in the box, another ball is drawn at random and kept aside the first. This process is repeated till the balls are drawn from the boxes. The probability that the balls drawn are in the sequence of 2 black, 4 white and 3 red is:

Q6

A bag contains ‘m’ white and ‘n’ black balls. Two players A and B alternately draw a ball from the bag, replacing the ball each time after draw. A beings the game. If the probability of A wining (that is drawing a white ball) is twice the probability of B wining, then the ratio mn is equal to:

Q7

If X is a binomial variate with parameters n and p, where 0 < p < 1 such that  is independent of n and r, then p equals:

Q8

Let X denote the number of time heads occur in n tosses of a fair coin. IfP(X = 4), P(X = 5) and P(X = 6) are in AP; the value of n is: