## Question

### Solution

Correct option is

mnb2 = (m + n)2ac     #### SIMILAR QUESTIONS

Q1

If the graph of the function y = 16x2 + 8(a + 5) x – 7a – 5 is strictly above the x – axis, then ‘a’ must satisfy the inequality

Q2

If tan A and tan B are the roots of the quadratic equation x2 – px + q = 0, then the value of sin2 (A + B) is

Q3

If x2 – 4x + log1/2 a does not have two distinct roots, then the maximum value of a

Q4

If the roots of the equation bx2 + cx + a = 0 be expression, then for all real values of x, the expression 3b2 x2 + 6bcx + 2c2 is

Q5

If , for all x Ïµ R, then

Q6

If x is real, the maximum value of is:

Q7

If the roots the equation ax2 + bx + c = are real and of opposite sign then the roots of the equation α (x – β)2 + β (x – α)2 = 0 are

Q8

abc are length of sides of an scalene triangle. If equation has real and distinct roots, then the value of λ is given by:

Q9

A quadratic equation with rational coefficients can have

Q10

For real x, the expression [(x + m)2 – 4mn]/[2(x – n)] can be have any value except