Question

If 8, 2 are the roots of x2 + ax + β = 0 and 3, 3 are the roots of x2 + α xb = 0 then the roots of x2 + ax + b = 0 are

Solution

Correct option is

9, 1

– a = 10, b = 9

∴  x2  – 10x + 9 = 0.

      x2  (10x – x) + 9 = 0

     x2 – 10x - x + 9 = 0

on solving we get,

                     (9, 1)

SIMILAR QUESTIONS

Q1

If x is real, the maximum value of  is:

Q2

If the roots the equation ax2 + bx + c = are real and of opposite sign then the roots of the equation α (x – β)2 + β (x – α)2 = 0 are

Q3

abc are length of sides of an scalene triangle. If equation

           

has real and distinct roots, then the value of λ is given by:

Q4

A quadratic equation with rational coefficients can have

Q5

If the roots of ax2 + bx + c = 0 are in the ratio mn then

Q6

For real x, the expression [(x + m)2 – 4mn]/[2(x – n)] can be have any value except

Q7

If the expression y2 + 2xy + 2x + my – 3 can be resolved into two rational factors, then m must be

Q8

If one root of the equation x2 + px + 12 = 0 is 4, while the equation x2 +px + q = 0 has equal roots, the value of q is

Q9

If x2 + px + 1 is a factor of ax2 + bx + c, then

Q10

The number of real roots of