Question

Let  be three non-zero vectors, no two of which are collinear. If the vector  is collinear with  is collinear with  is equal to 

Solution

Correct option is

 

It is given that  is collinear with  is collinear with .

  

  

  

  

  

SIMILAR QUESTIONS

Q1

Let D, E, F be the middle points of the sides BC, CA, AB respectively of a triangle ABC. Then,  equals

Q2

If G is the centroid of a triangle ABC, then  equals 

Q3

Let ABC be a triangle having its centroid at G. If S is any point in the plane of the triangle, then 

Q4

If O and O denote respectively the circum-centre and orthocentre of∆ABC, then 

Q5

If O and O denote respectively the circum-centre and orthocenter of âˆ†ABC, then  

Q6

Consider âˆ†ABC and ∆A1B1C1 in such a way that  and M, N, M1, N1 be the mid-point of AB, BC, A1B1 and B1C1 respectively. Then,  

Q7

Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin, then  equals

Q8

If A, B, C, D be any four points and E and F be the middle points of AC and BD respectively, then  is equal to

Q9

Given that the vectors  are non-collinear, the values of x and yfor which the vector equality  holds true if  are