Question

If the vectors  are the sides of a âˆ†ABC, then length of the median through A is 

Solution

Correct option is

 

Let D be the mid-point of BC. Then,   

            

  

Hence, required length =  units.

SIMILAR QUESTIONS

Q1

Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin, then  equals

Q2

If A, B, C, D be any four points and E and F be the middle points of AC and BD respectively, then  is equal to

Q3

Given that the vectors  are non-collinear, the values of x and yfor which the vector equality  holds true if  are  

Q4

Let  be three non-zero vectors, no two of which are collinear. If the vector  is collinear with  is collinear with  is equal to 

Q6

 

If the position vector of the three points are ,

 then the three points are 

Q7

Three points with position vectors  will be collinear, if there exist scalars xyz such that   

Q8

The position vectors of the vertices ABC of a âˆ†ABC are  respectively. The length of the bisector AD of the angle BAC where D is on the line segment BC, is     

Q9

 

Consider points ABC and D with position vectors 

 respectively. Then, ABCD is a   

Q10

The sides of a parallelogram are  then the unit vector parallel to one of the diagonals is