﻿ If the vectors  are the sides of a âˆ†ABC, then length of the median through A is  : Kaysons Education

If The Vectors  are The Sides Of a âˆ†ABC, Then Length Of The Median Through A is

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Question

Solution

Correct option is

Let D be the mid-point of BC. Then,

Hence, required length =  units.

SIMILAR QUESTIONS

Q1

Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin, then  equals

Q2

If A, B, C, D be any four points and E and F be the middle points of AC and BD respectively, then  is equal to

Q3

Given that the vectors  are non-collinear, the values of x and yfor which the vector equality  holds true if  are

Q4

Let  be three non-zero vectors, no two of which are collinear. If the vector  is collinear with  is collinear with  is equal to

Q6

If the position vector of the three points are ,

then the three points are

Q7

Three points with position vectors  will be collinear, if there exist scalars xyz such that

Q8

The position vectors of the vertices ABC of a âˆ†ABC are  respectively. The length of the bisector AD of the angle BAC where D is on the line segment BC, is

Q9

Consider points ABC and D with position vectors

respectively. Then, ABCD is a

Q10

The sides of a parallelogram are  then the unit vector parallel to one of the diagonals is