Question

In a regular hexagon ABCDEF, Then   

Solution

Correct option is

 

We have,   

      

  

In ∆ACD, we have

       

  

In ∆AED, we have  

       

SIMILAR QUESTIONS

Q1

 

Consider points ABC and D with position vectors 

 respectively. Then, ABCD is a   

Q2

If the vectors  are the sides of a âˆ†ABC, then length of the median through A is 

Q3

The sides of a parallelogram are  then the unit vector parallel to one of the diagonals is 

Q4

If the points  are collinear, where  are three non-coplanar vectors, the value of t is 

Q5

A vector coplanar with vectors  and parallel to the vector  

Q6

Let the coordinates of a point P with respect to a system of non-coplanar vectors  be (3, 2, 1). Then, the coordinates of P with respect to the system of vectors  and 

Q7

 

If (xyz) ≠ (0, 0, 0) and  

 then the values of a are

Q8

The vector  lies in the plane of the vectors  bisects the angle between . Then , which one of the following gives the possible values of α and β?

Q9

If  are vectors forming consecutive sides of a regular hexagonABCDEF, then representing side CD is  

Q10

If ABCDEF is a regular hexagon, then  equals