Question

If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then   

Solution

Correct option is

 

Taking O as the origin, let the position vectors of ABC and D be  respectively.   

In ∆OACG is the mid-point of AC

      

In ∆OBDG is the mid-point of BC.

  

Adding (i) and (ii), we get   

      

SIMILAR QUESTIONS

Q1

 

If (xyz) ≠ (0, 0, 0) and  

 then the values of a are

Q2

The vector  lies in the plane of the vectors  bisects the angle between . Then , which one of the following gives the possible values of α and β?

Q3

If  are vectors forming consecutive sides of a regular hexagonABCDEF, then representing side CD is  

Q4

In a regular hexagon ABCDEF, Then   

Q5

If ABCDEF is a regular hexagon, then  equals 

Q6

If  are the position vectors of points ABCD such that no three of them are collinear and  then ABCD is a 

Q7

ABCDEF is a regular hexagon with centre at the origin such that  Then, λ equals 

Q8

ABCD is a parallelogram with AC and BD as diagonals. Then,   

Q9

If OACB is a parallelogram with 

Q10

Let G be the centroid of âˆ† ABC. If  in terms of , is