Question

If the position vector of a point A is  divides AB in the ratio 2 : 3, then the position vector of B is   

Solution

Correct option is

 

Let  divide AB in the ratio 2:3 and let  be the position vector of B. Then, 

          

SIMILAR QUESTIONS

Q1

If ABCDEF is a regular hexagon, then  equals 

Q2

If  are the position vectors of points ABCD such that no three of them are collinear and  then ABCD is a 

Q3

ABCDEF is a regular hexagon with centre at the origin such that  Then, λ equals 

Q4

ABCD is a parallelogram with AC and BD as diagonals. Then,   

Q5

If OACB is a parallelogram with 

Q6

If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then   

Q7

Let G be the centroid of âˆ† ABC. If  in terms of , is    

Q8

 

The position vectors of the points ABC are ,

 respectively. These points

Q9

If the points with position vectors  are collinear, then p = 

Q10

If  are three non-zero vectors, no two of which are collinear and the vector  is collinear with  is collinear with , then