Question

The condition that the equation  has real roots that are the equal in magnitude but opposite in sign is

Solution

Correct option is

b2 = 2m2

Clearly x = m is a root of the equation. Therefore, the other root must be –m. that is,

                

 

   

 

SIMILAR QUESTIONS

Q1

Let f (x) = ax2 + bx + cac, Ïµ R and a ≠ 0. Suppose (x) > 0 for all x Ïµ R.

Let g (x) = f (x) + f ’ (x) + f ”(x). Then

Q2

If b < 0, then the roots x1 and x2 of the equation 2x2 + 6x + b = 0, satisfy the condition (x1/x2) < k where k is equal to.

Q3

If ax2 + bx + cabc Ïµ R has no real zeros, and if c < 0, then,

Q4

If x is real, then the maximum value of    

                                                                           

Q5

If both the roots of the equation x2 – 6ax + 2 – 2a + 9a2 = 0 exceed 3, then

Q7

Let α, β be the roots of the equation x2 – ax + b = 0 and An = αn + βn

Q8

Let f (x) = ax2 + bx + cabc Ïµ R. if f (x) takes real values for real values of x and non – real values for non – real values of x, then.

Q9

If α, β, γ are such that α + β + γ = 2, α2 + β2 + γ2 = 6, α3 + β3 + γ3 = 8, then α4 + β4 + γ4 is

Q10

If x is real, and