Question

Let  be unit vectors such that . Which one of the following is correct?

Solution

Correct option is

 

We have,   

         

⇒  Unit vectors  represent three sides of a triangle taken in order

⇒ Triangle is equilateral.

Proceeding as in illustration 14, we get

      

  

  

SIMILAR QUESTIONS

Q1

A unit vector making an obtuse angle with x-axis and perpendicular to the plane containing the points  also makes an obtuse angle with

Q2

 is a unit vector such that 

Q3

 then a unit vector normal to the vectors  

Q4

A unit vector perpendicular to both 

Q5

If  are the position vectors of the vertices ABC of a triangleABC, then the area of triangle ABC is  

Q6

If , then the length of the perpendicular from A to the line BC is 

Q7

The perpendicular distance of the point  from the line joining 

Q8

If the diagonals of a parallelogram are represented by the vectors , then its area in square units is

Q9

If  are three vectors such that  then

Q10

Let  be a unit vector perpendicular to unit vectors  and if the angle between  is α, then  is