Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

If A(1, a), B(a, a2), C(a2, a2) are the vertices of a triangle which are equidistance from the origin, then the centroid of the triangle ABC is at the point

Q2

Given the point A(0, 4) and B(0, –4), the equation of the locus of the pointp(x, y) such that |AP – BP| = 6 is

Q3

Coordinate (x, y) of a point P satisfy the relation 3x + 4= 9, y = mx + 1. The number of integral value of m for which the x-coordinate of p is also an integer is

Q4

The point A(2, 3), B(3, 5), C(7, 7) and D(4, 5) are such that 

Q5

Q, R and are the points on the line joining the points P(a, x) and T(b, y) such that PQ = QR = RS = ST.

Q6

The line joining A(bcos α, bsin α) and B(acos β, asin β) is produced to point M(x, y) so that AM : MB = b : a, then 

Q7

OPQR is square and M, N are the middle points of the sides PQ and QRrespectively then the ratio of the areas of the square and the triangle OMNis

Q8

If px1x2….xi,….and q y1y2,…y… are in A.P. with common difference a and b respectively, then locus of the center of mean position of the point Ai (xi, yi), = 1, 2 …n is

Q9

If α, β, γ are the real roots of the equation x3 – 3px3 + 3qx – 1 = 0, then the centroid of the triangle with vertices 

Q10

If G is the centroid and I the incentre of the triangle with vertices A(–36, 7), B(20, 7) and C(0, –8), then GI is equal to