Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

The point A(2, 3), B(3, 5), C(7, 7) and D(4, 5) are such that

Q2

Q, R and are the points on the line joining the points P(a, x) and T(b, y) such that PQ = QR = RS = ST.

Q3

The line joining A(bcos α, bsin α) and B(acos β, asin β) is produced to point M(x, y) so that AM : MB = b : a, then Q4

OPQR is square and M, N are the middle points of the sides PQ and QRrespectively then the ratio of the areas of the square and the triangle OMNis

Q5

If px1x2….xi,….and q y1y2,…y… are in A.P. with common difference a and b respectively, then locus of the center of mean position of the point Ai (xi, yi), = 1, 2 …n is

Q6

If α, β, γ are the real roots of the equation x3 – 3px3 + 3qx – 1 = 0, then the centroid of the triangle with vertices Q7

The number of points (p, q) such that p, q Ïµ {1, 2, 3, 4} and the equation px2 + qx + 1 = 0 has real roots is

Q8

If G is the centroid and I the incentre of the triangle with vertices A(–36, 7), B(20, 7) and C(0, –8), then GI is equal to

Q9

Consider the point  then

Q10

Find the co – ordinates of the point which divides the line segment joining the pints (5, – 2) and (9, 6) in the ratio 3 : 1.