﻿ Area of the triangle with vertices A(3, 7), B(–5, 2) and C(2, 5) is denoted by Δ. If ΔA, ΔB, ΔC denote the areas of the triangle with vertices OBC, AOC and ABO respectively, O being the origin, then : Kaysons Education

# Area Of The Triangle With Vertices A(3, 7), B(–5, 2) And C(2, 5) Is Denoted By Δ. If ΔA, ΔB, ΔC denote The Areas Of The Triangle With Vertices OBC, AOC and ABO respectively, O being The Origin, Then

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

ΔA + ΔB = ΔC – Δ

.

#### SIMILAR QUESTIONS

Q1

The points (a, b + c), (b, c + a) and (c, a + b) are

Q2

O(0, 0), P(–2, –2) and Q(1, –2) are the vertices of a triangle, R is a point on PQ such that PR : RQ

Q3

If three vertices of a rectangular are (0, 0), (a, 0) and (0, b), length of each diagonal is 5 and the perimeter 14, then the area of the rectangle is

Q4

If the line joining the points A(a2, 1) and B(b2, 1) is divides in the ratio b : a at the pint P whose x-coordinate is 7, their

Q5

If two vertices of a triangle are (3, –5) and (–7, 8) and centroid lies at the pint (–1, 1), third vertex of the triangle is at the point (a, b) then

Q6

α is root of the equation x2 – 5x + 6 = 0 and β is a root of the equation x2– x – 30 = 0, then coordinates  of the point P farthest from the origin are

Q7

are two points whose mid-point is at the origin.  is a point on the plane whose distance from the origin is

Q8

Locus of the point P(2t2 + 2, 4t + 3), where t is a variable is

Q9

If the coordinates of An are (n, n2) and the ordinate of the center of mean position of the points A1A2, … An is 46, then n is equal to

Q10

If the axes are turned through 450. Find the transformed from the equation

3x2 + 3y2 + 2xy = 2