Question

If a vertex of a triangle is (1, 1) and the mid-point of two sides through the vertex are (–1, 2) and (3, 2), then the centroid of the triangle is

Solution

Correct option is

E and F are mid-point of AC and AB respectively which pass through vertex A. Hence by mid-point formula the points C and are (5, 3) and (–3, 3) respectively. Hence centroid of ΔABC by

                                                    

                                                                                   

SIMILAR QUESTIONS

Q1

(0, 0), A(1, 1), B(0, 3) are the vertices of a triangle OAB.divides OB in the ratio 1 : 2, Q is the mid-point of AP, R divides AB in the ratio 2 : 1

If S is the mid-point of PR, then QS is equal to

Q2

a and b real numbers between 0 and 1 A(a, 1), B(1, b) andC(0, 0) are the vertices of triangle

1:- If the triangle ABC is equilateral, its area is equal to

Q3

If the triangle ABC in  isosceles with AC = BC and 5(AB)2 = 2(AC)2 then

Q4

The origin is shifted to(1, –2)then what are the coordinates be shifted if the point (3, –5) in the new position?

Q5

If the origin is shifted to (1, –2), the coordinates of A become (2, 3). What are the original coordinates of A?

Q6

Determiner as to what point the axes of the coordinates be shifted so as to remove the first degree terms from the equation

           (x, y) = 2x2 + 3y2 – 12x + 12+ 24 = 0

Q7

What will be the coordinates of the point  when the axes are rotated through an angle of 300 in clockwise sense?

Q8

What will be the coordinates of the point in original position ifr its coordinates after rotation of axes through an angle 600  ?

Q9

The in centre of the triangle with vertices , (0, 0) and (2, 0) is

Q10

If the equation of the locus of a point equidistant from the points

(a1b1) and (a2b2) is (a1 – a1)x + (b1  –  b2)y + c = 0,

Then the value of c is :