﻿ If OA and OB are two equal chords of the circle x2 + y2 – 2x + 4y = 0 perpendicular to each other and passing through the origin O, the slopes of OA and OB are the roots of the equation  : Kaysons Education

# If OA and OB are Two Equal Chords Of The Circle x2 + y2 – 2x + 4y = 0 Perpendicular To Each Other And Passing Through The Origin O, The Slopes Of OA and OB are The Roots Of The Equation

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

3m2 – 8m – 3 = 0

Let the equations of OA and OB be y – mx  = 0 and my + x = 0 since OAOB, lengths of the perpendiculars from the centre

(1, –2) of the circle on OA and OB are also equal.

#### SIMILAR QUESTIONS

Q1

Let ABCD be a quadrilateral with area 18, with side AB parallel to CD and AB = 2CD. Let AD be perpendicular to AB and CD. If a circle is drawn inside the quadrilateral ABCD touching all the sides, then its radius is

Q2

An equilateral triangle is inscribed in the circle x2 + y2 = a2 with the vertex at (a, 0). The equation of the side opposite to this vertex is

Q3

The lines 2x – 3y = 5 and 3x – 4y = 7 are the diameters of a circle of area 154 square units. An equation of this circle is (π = 22/7)

Q4

The equation f a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is

Q5

A line is drawn through the point P(3, 11) to cut the circle x2 + y2 = 9 at A and B. Then PAPB is equal to

Q6

Two rods of lengths a and b slide along the x-axid and y-axis respectively in such a manner that their ends are concyclic. The locus of the centre of the circle passing through the end points is

Q7

If the point (1, 4) lies inside the circle x2 + y2 – 6x – 10y + p = 0 and the circle does not touch or interest the coordinates axes, then

Q8

If the line x cos α + y sin α = p represents the common chord APQB of the circle x2 + y2 = a2 and x2 + y2 = b2 (a > b) as shown in the Fig, then AP is equal to

Q9

Two points P and Q are taken on the line joining the points A (0, 0) and B (3a, 0) such that AP = PQ = QB. Circles are drawn onAPPQ, and QB as diameters. The locus of the point S, the sum of the squares of the lengths of the tangents from which to the three circles is equal to b2, is

Q10

An equation of the chord of the circle x2 + y2 = a2 passing through the point (2, 3) farthest from the centre is