Question

The largest value of a third order determinant whose elements are 0 or 1, is

Solution

Correct option is

2

 

               

                                                   

Since each elements of ∆ is either 1 or 0, therefore the value of the determinant cannot exceed 3. Clearly, the value of âˆ† is maximum when the value of each term in first bracket is 1 and the value of each term in the second bracket is zero. But a1 b2c3 = a3 b1 c2 = a2 b3 c= 1 implies that every element of the determinant âˆ† is 1 and in that case ∆ = 0. Thus, we may have                                                                                                   

             

 

SIMILAR QUESTIONS

Q1

 

Q2

                            

Q4

If ab and c are pth, qth and rth terms of an H.P.,

                           

Q5

                        

Q6

then n equals

 

 

Q7

  

Q8

 

Q9
Q10

Solve for x: