Question

If two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 cut the coordinates axes in concyclic points, then 

Solution

Correct option is

a1a2  = b1b2 

Equation of a curve through the intersection of the lines and the coordinates axes is

  

If it represents a circle, co-eff of x2 and y2 are equal

⇒ a1a2 = b1b2.

SIMILAR QUESTIONS

Q1

Let A be the centre of the circle x2 + y2 – 2x – 4y – 20 = 0. The tangents at the point B(1, 7) and C(4, –2) on the circle meet at the point D. If Δ denotes the area of the quadrilateral ABCD, then 45Δ is equal to

Q2

If four distinct points (2, 3), (0, 2), (4, 5) and (0, t) are concylic, then t3+ 17 is equal to 

Q3

Equation of a tangent to the circle with centre (2, –1) is 3x + y = 0. The squar  of the length of the tangent to the circle from the point (23, 17) is

Q4

The centres of two circles C1 and C2 each of unit radius are at a distance of 6 units from each other. Let P be the mid-point of the line segment joining the centres of C1 and C2 and C be a circle touching C1 and C2externally. If a common tangent to C1 and C passing through P is also a common tangent to 2 and C1, then the radius of the circle C is 

Q5

An equation of the circle through (1, 1) and the points of intersection ofx2 + y2 + 13x – 3y = 0 and 2x2 + 2y2 + 4x – 7y – 25 = 0 is   

Q6

The abscissae of two points A and B are the roots of the equation x2 + 2ax – b2 = 0, and their ordinates are the roots of the equation x2 + 2px –q2 = 0. The radius of the circle with AB as diameter is  

Q7

The locus of the point of intersection of the tangent to the circle x = r cos θ, y = r sin θ at points whose parametric angles differ by

 is 

Q8

The locus of a point which moves such that the tangents from it to the two circles x+ y2 – 5x – 3 = 0 and 3x2 + 3y2 + 2x + 4y – 6 = 0 are equal is 

Q9

If the two circles x2 + y2 + 2gx + 2fy = 0 and x2 + y2 + 2g1x + 2f1y = 0 touch each other, then

Q10

The locus of the point which moves in a plane so that the sum of the squares of its distances from the lines ax + by + c = 0 and

bx – ay + d = 0 is r2, is a circle of radius.