Question

The distance between the chords of contact of the tangent to the circle x2 + y2 + 2gx + 2fy + c = 0 from the origin and the point (gf) is

Solution

Correct option is

Equations of the chords of contact of the tangents from origin (0, 0) and the point (g,  f) on the given circle are

  

or gx + fy + c = 0;                                                        ... (i)

           

Obviously, (i) and (ii) are parallel.    

                                                                           

SIMILAR QUESTIONS

Q1

A point moves such that the sum of the squares of its distances from the sides of a square of side unity is equal to 9. The locus of such a point is a circle

Q2

Radical centre of the three circles x2 + y2 = 9, x2 + y2 – 2x – 2y = 5, x2 + y2 + 4x + 6y = 19 lies on the line y = mx if m is equal to

 

Q3

The coordinates of the point on the circle x2 + y2 – 2x – 4y – 11 = 0 farthest from the origin are 

Q4

A circle passes through the origin O and cuts the axis at A(a, 0) and B(0,b). The reflection of O in the line AB is the point

Q5

The length of the longest ray drawn from the point (4, 3) to the circle x2y2 + 16x + 18y + 1 = 0 is equal to

Q6

1:- The chords in which the circle C cuts the members of the family S of circles through A and B are con-current at  

Q7

2:- Equations of the member of the family S which bisects the circumference of C is

Q8

3:- If O is the origin and P is the centre of C, then the difference of the squares of the lengths of the tangents from A and B to the circle is equal to

Q9

If the two (x – 1)2 + (y – 3)2 = r2 and x2 + y2 – 8x + 2y + 8 = 0 intersect in two distinct points, then

Q10

The angle between the tangents drawn from the origin to the circle (x – 7)2 + (y + 1)2 = 25 is