﻿ The angle between the tangents drawn from the origin to the circle (x – 7)2 + (y + 1)2 = 25 is : Kaysons Education

The Angle Between The Tangents Drawn From The Origin To The Circle (x – 7)2 + (y + 1)2 = 25 Is

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Question

Solution

Correct option is

π/2

If y = mx is a tangent from the origin to the circle (x – 7)2 + (y + 1)2 = 25, then

If m1m2 are its roots, then m1m2 = –12/12 = –1.

Hence the angle between the two tangents is π/2.

So, (c) is correct answer. (Here origin lies on director circle of given circle)

SIMILAR QUESTIONS

Q1

Radical centre of the three circles x2 + y2 = 9, x2 + y2 – 2x – 2y = 5, x2 + y2 + 4x + 6y = 19 lies on the line y = mx if m is equal to

Q2

The coordinates of the point on the circle x2 + y2 – 2x – 4y – 11 = 0 farthest from the origin are

Q3

A circle passes through the origin O and cuts the axis at A(a, 0) and B(0,b). The reflection of O in the line AB is the point

Q4

The length of the longest ray drawn from the point (4, 3) to the circle x2y2 + 16x + 18y + 1 = 0 is equal to

Q5

1:- The chords in which the circle C cuts the members of the family S of circles through A and B are con-current at

Q6

2:- Equations of the member of the family S which bisects the circumference of C is

Q7

3:- If O is the origin and P is the centre of C, then the difference of the squares of the lengths of the tangents from A and B to the circle is equal to

Q8

If the two (x – 1)2 + (y – 3)2 = r2 and x2 + y2 – 8x + 2y + 8 = 0 intersect in two distinct points, then

Q9

The distance between the chords of contact of the tangent to the circle x2 + y2 + 2gx + 2fy + c = 0 from the origin and the point (gf) is

Q10

A square is inscribed in the circle x2 + y2 – 2x + 4y + 3 = 0. Its sides are parallel to the co-ordinates axes. Then one vertex of the square is