﻿ If α, β, γ, δ be four angles of a cyclic quadrilateral taken in clockwise direction then the value of  will be: : Kaysons Education

# If α, β, γ, δ Be Four Angles Of A Cyclic Quadrilateral Taken In Clockwise Direction Then The Value Of  will Be:

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

We know that if ABCD be a cyclic quadrilateral then α + γ = π and β + δ = π

Square.

by (1), (2)

#### SIMILAR QUESTIONS

Q1

A circle touches the x-axis and also touches the circle with centre (0, 3) and radius 2. The locus of the centre of the circle is:

Q2

The triangle PQR is inscribed in the circle x2 + y2 = 25. If Q and R have co-ordinates (3, 4) and (–4, 3) respectively than QPR is equal  to

Q3

Let AB be a chord of the circle x2 + y2 = a2 subtending a right angle at the centre. Then the locus of the centroid of the triangle PAB as Pmoves on the circle is

Q4

The lines joining the origin to the points of intersection of the line 4x + 3y = 24 with the circle (x – 3)2 + (y – 4)2 = 25 are

Q5

If the circles x2 + y2 + 2ax + cy + a = 0 and x2 + y2 – 3ax + dy – 1= 0 intersect in two distinct points P and Q then the line

5x + by – a = 0 passes through P and Q for:

Q6

The intercept on the line y = x by the circle x2 + y2 – 2x = 0 is AB. Equation of the circle on AB as diameter is:

Q7

A square is formed by following two pairs of straight lines y2 – 14y + 45 = 0 and x2 – 8x + 12 = 0. A circle is inscribed in it. The centre of the circle is

Q8

Let PQ and RS be tangents at the extremities the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals

Q9

A diameter of x2 + y2 – 2x – 6y + 6 = 0 is a chord to circle (2, 1), then radius of the circle is

Q10

A square is inscribed in the circle x2 + y2 – 2x + 4y + 3 = 0. Its sides are parallel to the co-ordinate axes. Then one vertex of the square is