## Question

### Solution

Correct option is

2

Let CD = α so that AB = 2α be two parallel lines. Taking A as origin the co-ordinate are A (0, 0), B(2α, 0), D(0, 2r) and C(α, 2r). Since the circle is touching the axes of co-ordinates it is of form    The above line (2) is a tangent to circle (1). Apply the condition of tangency i.e., p = r we have   Area of quadrilateral  i.e. trapezium ABCD is  #### SIMILAR QUESTIONS

Q1

The lines joining the origin to the points of intersection of the line 4x + 3y = 24 with the circle (x – 3)2 + (y – 4)2 = 25 are

Q2

If the circles x2 + y2 + 2ax + cy + a = 0 and x2 + y2 – 3ax + dy – 1= 0 intersect in two distinct points P and Q then the line

5x + by – a = 0 passes through P and Q for:

Q3

The intercept on the line y = x by the circle x2 + y2 – 2x = 0 is AB. Equation of the circle on AB as diameter is:

Q4

A square is formed by following two pairs of straight lines y2 – 14y + 45 = 0 and x2 – 8x + 12 = 0. A circle is inscribed in it. The centre of the circle is

Q5

Let PQ and RS be tangents at the extremities the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals

Q6

A diameter of x2 + y2 – 2x – 6y + 6 = 0 is a chord to circle (2, 1), then radius of the circle is

Q7

If α, β, γ, δ be four angles of a cyclic quadrilateral taken in clockwise direction then the value of will be:

Q8

A square is inscribed in the circle x2 + y2 – 2x + 4y + 3 = 0. Its sides are parallel to the co-ordinate axes. Then one vertex of the square is

Q9

A circle passes through the point (–1, 7) and touches the line y = x at (1, 1). Its diameter is

Q10

Let a circle be given by 2x(x – a) + y(2y – b) = 0, (a  0, b ≠ 0). Find the condition on a and b, if two chords each bisected by the x – axis can be drawn to the circle from 