﻿ The equation of the tangent to the ellipse x2 + 16y2 = 16 making an angle of 600 with x-axis is : Kaysons Education

# The Equation Of The Tangent To The Ellipse x2 + 16y2 = 16 Making An Angle Of 600 with X-axis Is

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

a = 4, b = 1: slope of tangent is tan 600 =

any tangent to ellipse is

y = mx + c              … (1)

c2 = a2m2 + c2

.

#### SIMILAR QUESTIONS

Q1

If CP and CD be any two semi-conjugate diameters of the ellipse  and the circle with CP and CD as diameters intersect in R, then R lies on the curve

Q2

The locus of the point whose polar with respect to the ellipse  touches the parabola y2 = 4kx is

Q3

The polar of lx + my =1 with respect to the ellipse  lies on the ellipse  if

Q4

The locus of the poles of the tangents to the ellipse  w.r.t. the circle x2 + y2 = a2 is

Q5

A variable point P on the ellipse eccentricity e is joined to its foci S, S’. The locus of the incentre of   is an ellipse of eccentricity

Q6

The locus of the point of intersection of two perpendicular tangent to the ellipse , is

Q7

The equation of the ellipse with focus (–1, 1), directrix x – y + 3 = 0 and eccentricity , is

Q8

The equation of the ellipse whose center is at origin and whihch passes through the points (–3, 1) and (2, –2) is

Q9

The equation x2 + 4xy + y2 + 2x + 4y + 2 = 0 represents

Q10

The equation of the ellipse whose foci are  and one of its directrix is 5x = 36.