Question

Solution

Correct option is

Given hyperbola

Polar of a point (x1y1) w.r.t. to ellipse is ….. (2) = mx + c is tangent to if c2 = a2 m2 – b2   SIMILAR QUESTIONS

Q1

The locus rectum of the hyperbola

9x2 – 16y2 – 18x – 32y – 151 = 0 is

Q2

The eccentricity of the conjugate hyperbola of the hyperbola x2 – 3y2 = 1 is

Q3

The distance between the directrices of a rectangular hyperbola is 10 units, then distance between its foci is

Q4

The ,locus of the middle points of portions of the tangents to the hyperbola , intercepted between the axes is

Q5

The locus of pole of any tangent to the circle x2 + y2 = 4 w.r.t. the hyperbola x2 – y= 4 is the circle

Q6

The foci of a hyperbola coincide with the foci of the ellipse . The equation of the hyperbola if its eccentricity is 2, is

Q7

The normal to the rectangular hyperbola xy = c2 at the point ‘t’ meets the curve again at point “t” such that

Q8

PN is the ordinate of any point P on the hyperbola and AA’ is its transverse axis. If Q divides AP in the ratio a2 : b2, then NQ is

Q9

If SK perpendicular from focus S on th tangent at any point P of the hyperbola , then K lies on

Q10

The lines 2x + 3y + 4 = 0 and 3x – 2y + 5 = 0 may be conjugate w.r.t. the hyperbola if