Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

Let f (x) = [n + p sin x], x Ïµ (0, π), n Ïµ Z and p is a prime number, where [.] denotes the greatest integer function. Then find the number of points where f (x) is not differential.

Q2

Fill in the blank, statement given below let . The set of points where f (x) is twice differentiable is ……………. .

Q3

The function f (x) = (x2 – 1) |x2 – 3x +2| + cos ( | | ) is not differentiable at

Q4

The number of points in (1, 3), where is not differentiable is:

Q5

 

Let f and g be differentiable function satisfying g’ (a) = 2, g (a) = b andfog = I (identity function) 

Then, f ’(b) is equal to:

Q6

If the function , (where [.] denotes the greatest integer function) is continuous and differentiable in (4, 6), then.