Question

If y2 = P(x) is a polynomial of degree 3, then    

              is equal to  

Solution

Correct option is

P(xP’’’(x)

From y2 = P(x), we have 2yy1 = P’(x), i.e., 2y­1 = P’(x)/y.  

                 

                 

  

  

SIMILAR QUESTIONS

Q1

 

Let f (x) = [x] and

               

Q2

Let

         

The values of the coefficient a and b for which the function is continuous and has a derivative at x0, are

Q3

Given f’(2) = 6 and f’(1) = 4.  

       

Q4

Let R âŸ¶ R be such that f(1) = 3 and f’(1) = 6. Then

                     

Q5

The domain of the derivative of the function

           

Q6

If (0) = 0, f’(0) = 2 then the derivative of  at x = 0 is 

Q7

  

If f is differentiable for all x then 

Q8

Let f and g be differentiable function such that f’(x) = 2g(x) and g’(x) = –f(x), and let T(x) = (f (x))2 – (g(x))2. Then T’(x) is equal to

Q9

Let f be a twice differentiable function such that f’’(x) = –f(x) and f’(x) = g(x). If h’(x) = [f(x)]2 + [g(x)]2h(1) = 8 and 

h(0) = 2, then h(2) is equal to

Q10

If  then the set of all points where the derivative exist is