Question

 for real and y. If f’(0) exists and equals – 1 and (0) = 1 then the value of f(2) is

Solution

Correct option is

–1

Putting y = 0 in the given functional equation, 

  

  

  

Let x Ïµ R, then

           

                      

                       using (i)

                          

                        

  

  

Thus      f(x) = 1 – x, in particular 

              f(2) = 1 – 2 = –1.

SIMILAR QUESTIONS

Q1

If f is a differentiable function at a point ‘a’ and f’(a 0 then which of the following is true.

Q2

 is equal to

Q3

Which of the following could be not true if 

Q4

Suppose that f(x) = [x], the least integer function then

Q5

  is equal to

Q7
Q8
Q10

If f : R  R is a function such that (x) = x3 + x2 f’(1) + xf’’(2) + f’’’(3) for x Ïµ R then the value of f (2) is